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Scaling behavior for the pressure and energy of shearing fluids

Jialin Ge, B. D. Todd,* Guangwen Wu, and Richard J. Sadus
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Recent simulation work has established that the widely accepted mode-coupling theory for the strain rate
dependence of the pressure and energy of simple fluids under shear~i.e., energy and pressure are functions of
strain rate to the power32! is observed in the vicinity of the triple point. Away from the triple point, the scaling
exponent of the strain rate was seen to be closer to 2 than3

2, suggesting a possible analytic behavior. In this
paper, we accurately determine the scaling exponent behavior for a Lennard-Jones fluid in the dense fliud
region and find that it varies continuously between;1.2 and;2 as a function of density and temperature, thus
confirming its nonanalyticity. We furthermore find that the behavior is characterized by a simple linear function
of density and temperature.

DOI: 10.1103/PhysRevE.67.061201 PACS number~s!: 61.20.Ja, 66.20.1d, 82.20.Wt, 83.50.Ax
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In recent publications@1,2# we have demonstrated by non
equilibrium molecular dynamics~NEMD! simulations that
the accepted behavior of simple fluids under planar sh
flow, namely that the pressure and energy are linear funct
of ġ3/2, whereġ is the strain rate, is only strictly true in th
vicinity of the triple point. In both these papers we show
that away from the triple point the behavior of the expon
in the strain rate was closer to 2, suggesting a possible
lytic dependence. In this paper, we explore this scaling
ponent dependence with greater precision and over a sig
cant range of densities and temperatures, spanning the d
fluid region of the phase diagram for the Lennard-Jo
fluid. We find a remarkably simple relationship clearly de
onstrating that the scaling exponent is a continuous lin
function of temperature and density. Significantly, the co
ficients of these linear terms must be either universal or o
dependent on the intermolecular potential. The exponent
ies continuously between;1.2 and 2. There is thus nothin
special about the32 exponent predicted by the mode-couplin
theory of Kawasaki and Gunton@3#. While it does occur nea
the triple point, it also occurs at higher density and tempe
ture state points. That previous NEMD simulations have c
curred with the mode-coupling theory prediction of a3

2 ex-
ponent is a fortuitous consequence of performing simulati
at the triple point. Agreement with the mode-coupling theo
prediction breaks down at most other state points. This
covery indicates that there is a compelling need to reexam
the theoretical basis of the mode-coupling theory and ei
reformulate it such that it remains valid in the entire den
fluid phase, or else come up with an alternative theoret
foundation.

In our simulations, we have ensured to explore only
dense fluid phase. We note here that ‘‘fluid’’ in this stri
sense may refer to liquid-vapor coexistence in some ca
but we have observed that this does not influence the sh
of the strain rate profiles. We take care not to probe
liquid-solid coexistence region, as the strain rate profiles
not display simple power-law behavior in this region.

*Author to whom correspondence should be addressed. E-
address: btodd@swin.edu.au
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Our simulations are performed on a Lennard-Jones 6
fluid of 500 atoms. We use a cutoff ofr c53.5s, which is a
value often cited in the literature by other workers. To ch
acterize the phase diagram for this cutoff, we perform Gib
ensemble calculations for the liquid-vapor coexistence cu
@4,5#. The solid-liquid coexistence is taken from the literatu
@6#, and the phase diagram is presented in Fig. 1. Knowle
of the phase diagram ensures that we probe only the d
fluid region of the thermodynamic state space available to
in the weak field limit. The normal convention was adopt
for the reduced density (r* 5rs3), temperature (T*
5kT/«), energy (E* 5E/«), pressure (p* 5ps3/«), strain
rate „ġ* 5@s(m/«)1/2#ġ…, and time„t* 5@«/ms2#1/2t…. All
quantities quoted in this work are in terms of these redu
quantities and the superscript asterisk will be omitted. Wit
the reduced temperature range of;0.69 to 1.25 we may
safely conduct simulations between reduced densities
;0.7 to 0.84 and remain in the dense fluid region in t
weak field limit.

ail

FIG. 1. Phase diagram for the 6-12 Lennard-Jones fluid wit
cutoff radius of r c53.5s. The triple point is located at (r,T)
5(0.85,0.687), in agreement with Ref.@6#, and the critical point is
estimated as (r,T)5(0.31,1.26). The solid-liquid line is also ob
tained from @6~b!#. The gas vapor, liquid, fluid, and solid phas
regions are indicated by the symbolsG, V, L, F, and S, respec-
tively.
©2003 The American Physical Society01-1
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Our NEMD simulations were conducted using the sta
dard thermostatted Sllod1 equations of motion@7#, the details
of which may be found in our previous work@1,2#, and we
use a Gaussian thermostat. Simulation run lengths varied
cording to the temperature/density requirements. For
stance, simulations at low density~requiring long runs for
good statistics! consisted typically of trajectories o
400 000t, wheret50.001 is the time step. Averages of a
quantities are then taken over 30–40 trajectories of
length. For high densities this could be reduced to;10 tra-
jectories of 200 000t each while still preserving the sam
level of statistical accuracy. In all figures presented, er
bars represent the standard error.

In what follows, we do not assume any value of the sc
ing exponent in either the energy or pressure~e.g., 3

2 or 2!,
but determine its valuea priori via a least-squares fit of th
quantity~energy or pressure! as a function of strain rate. W
assume only that the total energy and pressure obser
power-law dependence of the form

E5E01aġa,

p5p01bġa, ~1!

whereE0 andp0 are the total internal energy and pressure
equilibrium, anda and b are constants that depend on t
density and temperature. This is certainly justifiable based
our previous work@1,2# and that of Matinet al. @8#, and we
typically find x2;1025 for the fits to the data presented
this paper. We then extract the value ofa for each (r,T)
state point, where for each state point we probe the rang
<ġ<0.6 in steps of 0.1 reduced strain rate units~additional
points were used to probe the Newtonian regime 0<ġ
<0.1). This range encompasses both the Newtonian
non-Newtonian regimes. For simple fluids, a single expon
seems to be able to accurately describe the scaling beh
of the pressure and energy at any particular state po
within the range of uncertainties in our simulation da
Within these uncertainties we were unable to observe dif
ent power-law behavior for the Newtonian region within t
strain rates 0<ġ<0.1. This is clearly not the case for mo
complex polymeric fluids, in which different scaling exp
nents can be found in the Newtonian and non-Newton
regimes~see, for example, Ref.@9#!. Even if greater resolu-
tion were able to differentiate between different ener
pressure scaling parameters for the Newtonian and n
Newtonian regions in a simple fluid, our results are still va
in the non-Newtonian regime.

In Fig. 2 we plot the exponenta computed for both the
total potential energy per particle~U! and pressure~p! as a
function of density for three different temperatures. HereU
is defined asU5( i , j

N ui j /N, whereui j is the interatomic po-
tential energy between atomsi and j, andN is the total num-
ber of atoms in the simulation. The pressure is calculate
p5 1

3 Tr(P), whereP is the pressure tensor@7#. We use po-

1These equations are named Sllod because of the close rela
ship to the Dolls tensor algorithm.
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tential energy to determinea ~rather than total energy! as the
temperature is constrained to a constant value and thus
not contribute to the shape of the energy versus strain
profile. The temperatures span the entire range of poss
values wherein the fluid will remain in the dense fluid regi
over the range of densities studied. There are three sig
cant features to note:~i! at all temperatures, the exponenta is
a linear function of density, maximum at low densities~;2!,
decreasing continuously to a minimum at high densit
~;1.2!; ~ii ! the value ofa is, within error bars,identical for
both U and p; and ~iii ! the dense liquid phase is clear
nonanalytic in strain rate. Furthermore, the widely accep
value ofa5 3

2 is only true in avery smallregion of the full
available state space, lying in a range of densities betw
~0.8,0.9!, depending on the temperature~increasing density
with increasing temperature!.

There is another significant feature to come out of t
study. The exponenta can be expressed as a simple line
function of both temperature and density:

a5A1BT2Cr, ~2!

whereA, B, andC are coefficients with the constant value
A53.6760.04, B50.6960.03, and C53.3560.03. The
values ofA, B, andC are either universally true for all single
component simple fluids~e.g., 11

3 , 2
3, and 10

3 , respectively!, or
else must be functions only of the intermolecular potent
The significance of such a simple relationship is that it m
now be possible to predict the pressure, stress, energy,
of at least simple nonequilibrium fluids as a function
strain rate atany arbitrary thermodynamic state point in th
dense fluid phase. Equation~2! thus acts in an analogous wa
as an equation of state would, and can be used to charact
the scaling exponenta.

We note here that we did not apply any long-range c
rections to our pressure or energy calculations. This is in
unnecessary, as the long-range correction would only s
the (p,U) values by a constant amount@10#; the shapes of
the profiles~from which thea are calculated! remain un-

on-

FIG. 2. a as a function of density for different temperatures. A
open symbols represent fits determined from the potential en
profile, whereas solid symbols refer to fits determined from
pressure profile.
1-2



o

w
m
e

o
d

in
de
io

e
e
t
es

a
y

i

rring
e
ex-
as

at
ar
n

the
-
f?
that
ne
ei-
r-
ret-

.

p-
or
er-
d-
ter

tri-

SCALING BEHAVIOR FOR THE PRESSURE AND . . . PHYSICAL REVIEW E67, 061201 ~2003!
changed. However, to ensure thata is independent of the
value of cutoff used, we performed simulations at a cutoff
half the simulation box length,r c5L/2 at a fixed temperature
of T51.0 over a range of liquid densities. Note thatr c will
be different for eachr studied. We compare the value ofa
calculated for this system with those of our fixed cutoff (r c
53.5s) in Fig. 3 and find perfect agreement.

A characteristic plot ofa computed for bothU andp as a
function of temperature at a fixed density of 0.8442 is sho
in Fig. 4. As expected, the relationship is linear, but this ti
with a positive slope. Clearly, one could plot a thre
dimensional curve in whicha is displayed as a function ofT
andr, but as the curve would in fact be a plane in therm
dynamic state space there is no new insight to be gaine
doing this.

Finally, to ensure that the fluid is indeed nonanalytic
strain rate, we also included the next allowable fourth-or
term in the pressure and energy Taylor series expans
~proportional toġ4) ~see Ref.@2#!, but found that the fit can
be extremely poor at state points away from regions wh
a;2. We also tried fitting an exponential function to th
data, with similarly poor results. We are thus confident tha
simple power-law relationship is valid within the strain rat
studied in this paper.

To conclude, we have fully characterized the shear r
scaling exponent behavior for the pressure and energ
simple atomic Lennard-Jones fluids. We find that the fluid

FIG. 3. a as a function of density atT51.0 for cutoff values of
r c53.5s and r c5L/2, whereL is the simulation box length.
.
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nonanalytic in strain rate, but that the accepted3
2 exponent

has no special place in thermodynamic state space, occu
in a very limited region of relatively high density. A simpl
single linear relationship has been found that relates the
ponent ofboth the pressure and energy strain rate profiles
a function of temperature and density. While it is likely th
this linear relationship will be true for other intermolecul
potentials~e.g., including those with three-body interactio
terms!, an intriguing question remains: are the values of
coefficients of Eq.~2! (A,B,C) independent of intermolecu
lar potential, and hence ‘‘universal,’’ or functions thereo
We are endeavoring to answer this question. It is hoped
our work will inspire other liquid state theorists to reexami
the mode-coupling theory of Kawasaki and Gunton and
ther attempt to extend its validity into wider regions of the
modynamic state space, or else invent an alternative theo
ical framework to explain the observations reported here

J.G. thanks the Australian government for financial su
port. G.W. thanks the School of Information Technology f
financial support. We acknowledge the Swinburne Sup
computer Centre and the Australian Partnership for A
vanced Computing for generous allocations of compu
time.

FIG. 4. a as a function of temperature atr50.8442. Circles
represent fits obtained from the potential energy profile, and
angles represent fits obtained from the pressure profile.
-
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